头条

Sam Altman 再出手,投资了两个不到 20 岁的小创业者

文 / 币门户 来源 / 阅读 / 5503 1年前
AI 到底是变革还是泡沫?


撰文:王王

编辑:蔓蔓周


Sam Altman又出手了。这次他投资了一个只有 5 个人的 RPA 早期团队 Induced AI,两位联合创始人Aryan SharmaAyush Pathak,一个 18 岁,一个 19 岁。


不只是 Sam Altman,SignalFire、Peak XV 、SV Angel 等机构共同参与了 Induced AI 这一轮 230 万美金的种子轮融资。此次融资,科技加速器AI Grant的两位创始人Nat FriedmanDaniel Gross也加入了 Induced AI 的团队。这两位在科技界的大名如雷贯耳,Nat 曾任 Github 的 CEO,Daniel 创立的搜索引擎公司 Cue 则被苹果收购。


这支团队及其产品有何过人之处,为何能够吸引众多大佬的橄榄枝呢?


RPA 3.0:打开浏览器,让 AI 完成所有工作


Induced AI 的两位创始人——AryanAyush——别看年龄小,创业经历却相当丰富。这两位年轻程序员的创业履历遍及医疗、广告、教育、区块链、web3 等领域,甚至还发起过创业社群和类似孵化器的组织。


此次创立的 Induced AI 则是一款释放企业员工生产力的「RPA 3.0」。用户只需用简单的英语输入工作流程和录屏视频,Induced AI 就能将其实时转换为伪代码,并调取多种相关工具,来执行大量重复性任务。


两位创始人|图源:Linkedln


RPA(Robotic Process Automation,机器人流程自动化)并非新鲜概念,普通人在日常生活中也随处可见,例如 Excel 中的「宏」,或者很多人用来抢演唱会门票的小工具「按键精灵」,都可以看做 RPA 的前身。传统的 RPA 定义上,软件记录人的操作,比如点击鼠标、键盘输入、打开文件夹、发送邮件等,并将这些操作固定下来形成规则和套路,批量地自动执行,从而节省人的时间,提升工作效率。随着 AI 技术进步,机器识别图像、理解语言、逻辑思考的能力不断提升,这些技术也与 RPA 结合到一起,释放更大的能量。


正如 RPA 概念所定义的,迄今为止,市面上的 RPA 工具需要人工制定好明确的规则,而复杂任务的规则也会耗费大量人力。Induced AI 则借助大语言模型的能力,让工具有了逻辑推理和判断的能力。用户只需要说出他的需求,比如「给我建个 Jira 的 ticket」,或者「帮我筛选一波简历,给候选人发面试邀请」,Induced AI 就可以对要做哪些事情进行实时判断和拆解,并自动调取相关的工具来完成整个流程。


以筛选简历这个任务为例,常规的人工操作流程包括:登录你的领英账号、搜索简历、评估简历、下载简历、发送邀请等。如果领英没有提供官方的 API 接口,过去的 RPA 很可能就卡在登录这一步了,甚至可能被判定为恶意机器人。Induced AI 在 Chromium 上构建了一个浏览器环境,它有自己的内存、文件系统和身份验证凭据(电子邮件、电话号码)来执行复杂的流程,因此可以自动完成登录、填写验证码、文件下载、存储和重复使用数据等动作,没有开放 API 的软件也拦不住 Induced AI。


02 一波 AI Agent 正在袭来


让工具,特别是有智能的工具替人类干活,是从我们的老祖宗开始就产生的梦想。从木牛流马到 Siri,人们始终觉得这些「助手」还欠点儿火候。直到 ChatGPT 和 AutoGPT 横空出世,AI Agent 似乎即将成为可能。


OpenAI 的研究员Lilian Weng撰文定义了基于大语言模型的 AI Agent:大语言模型、记忆、任务规划、使用工具,四个模块缺一不可。尽管 Induced AI 团队将自己定位成「RPA 3.0」,但从其产品特性上来看,他们更像一个 AI Agent,这也是为什么 Sam Altman 等 AI 大佬一致看好这个年轻的团队。


当前的 AI 热潮下,Induced AI 不是第一个、也绝不是最后一个 AI Agent 团队。


暂且不提那些订票、点外卖的小而美 Agent,或者 AutoGPT、HuggingGPT 等几乎人尽皆知的项目,与 Induced AI 有同样打造 AI 员工野心的团队就有不少。


例如今年三月完成 3.5 亿美元 B 轮融资的Adept,自己训练了一个 ACT-1,这个模型专门用来在计算机上响应用户的自然语言指令并执行操作。它可以使用现有的所有软件工具、API 和网站。ACT-1同样基于浏览器工作,用户可以在和 AI 的聊天框里输入自己的命令,例如在 Salesforce 里创建一条销售线索,或者在 GoogleSheet 里计算一些数据。


Adept 的 ACT-1|图源:Brigade Web


无独有偶,科技公司Rabbit也研发了自己的大模型 LAM(Large Action Model),并基于它推出了一套完整的「个人操作系统 Rabbit OS」解决方案。LAM 能够观察人机交互的界面,形成「概念蓝图」,从而在用户的自然语言指令不那么明确的时候理解并实现人类的潜在意图。基于 LAM,Rabbit 还专门设计了一套软件平台,使其 Agent 能够更人性化地完成任务。今年 10 月,Rabbit 获得 Khosla Ventures 领投、老股东跟投的 2000 万美元融资。


03 未来已来吗?


当然,除了创业团队,传统的 RPA、低代码、无代码等公司,几乎无一不在拥抱大语言模型和 AI Agent,毕竟在今天,只要一提这两个概念就能让投资人和客户眼前一亮,忍不住多看一眼。


今年以来,AI Agent 的几个爆款应用和几次出圈,让人工智能的呼声一次次被推向高潮。可我们仍然不禁要问,未来已来吗?眼前的热闹是变革还是泡沫?


如果拿自动驾驶来做个比喻,我们更为熟悉的 Copilot 和 Midjourney 这样的产品类似 L3 级别的自动驾驶,即机器是人类的「助手」和「副驾」,而 Agent 对应着 L4 级别的自动驾驶,人类只需设定目标、监督结果,机器自己完成决策和执行。今天,L3 级别的 AI 副驾仍然处于落地应用的早期,无论是技术能力还是商业价值,尚有大量值得探讨的问题,未能全面推广。


以此看来,L4 级别的 AI Agent 大规模应用可能就更遥远了。那么,当前的 AI 热又是一波割韭菜的炒作吗?它是否会想几年前的区块链、VR、元宇宙一样,只是昙花一现?


Adept 的 ACT-1|图源:DEV


可以肯定的是,生成式 AI 以及相关的概念热度正在消退。可以看硅兔君之前的文章:《Jasper AI 一年内估值打 8 折,AIGC 开始降温》。


无论是媒体关注还是市场反应都已经暗暗证实了这一点。Gartner 今年发布的技术成熟度曲线上,生成式 AI 和 AI 增强的软件工程都放在了膨胀期,意味着这两项技术在未来 2-5 年都即将进入幻灭期低谷——一如曾经的自动驾驶和上述技术概念。不过,正是在热度衰减、噪声安静的幻灭期,才有更多有意义的经验和知识沉淀下来,为接下来的启蒙期奠定基础。


在变革性技术的发展历程中,每一次波峰波谷都有意义。


从图灵机到 IBM 的超级计算机深蓝,从机器学习到神经网络,从 AlphaGo 到 ChatGPT,每一个里程碑之间都充满失望、怀疑和寒冬,将视线拉长,人类走到今天已经取得了长足的进步。无论是否有泡沫,未来永远是乐观者和实干者创造的。


参考资料:
Sam Altman backs teens’ AI startup automating browser-native workflows(TechCrunch)
https://www.rabbit.tech/
https://www.adept.ai/

评论

共0条评论
  • 这篇文章还没有收到评论,赶紧来抢沙发吧~

站点声明:本站转载作品版权归原作者及来源网站所有,原创内容作品版权归作者所有,任何内容转载、商业用途等均须联系原作者并注明来源。

免责声明:币门户作为开放的资讯分享平台,所提供的资讯仅代表投稿用户的个人观点,与币门户平台立场无关,且不构成任何投资理财建议。

Powered By 币门户 © 2019-2023
相关侵权、举报、投诉及建议等,请发QQ E-mail   客服QQ:1117-0303

友情链接: 金色财经